Techniques of sustainable architecture is a creative program along with technical challenges. It is designed to prepare students to meet the requirements of the construction industry in general and to meet the growing need to adopt and develop strategies for development and design that are sustainable. This pioneering program is based on the needs of future employers and encourages students to become aware of the impact of their professional practice on their environment. The course leads to many careers as interesting as each other and offers various professional development opportunities in the following areas: architecture, engineering, property development, construction and many others.

Most governments now concerned about issues of sustainable development and environmental awareness of individuals has led to responsible consumption and to alternative lifestyles. The buildings that make up our modern cities generate a high demand for energy and construction as they work often causes a significant negative environmental impact. The philosophy and principles of design of the program of sustainable architecture techniques Herzing College are trying to change the practice of architecture in order to move towards a new approach to architectural design and construction. Passive design issues, which focus on natural cycles and their relationship to the design process, and issues of recycling and use of green materials are at the heart of the program of sustainable architecture Technical College and return continuously during the program. Students will learn approaches to green technologies and renewable energy and will be trained to improve the energy performance of buildings.

This program was developed in response to the growing interest in sustainable architecture. The labor market relative to sustainable design, conservation, development and urban rehabilitation of contaminated sites is growing. The public, professionals in the field of architecture and governments are becoming increasingly aware of the urgency to invest in a sustainable approach to the built and natural environment. By extension, the importance of the complex relationship between design and construction of a hand, building conservation and material recycling and sustainability on the other hand, is becoming more evident. This will therefore result in an increasing need for graduates in the field of sustainable architecture, to be able to provide support and skills required to successfully undertake projects in this emerging field. Whether it's the use of water, the disposal of construction waste, energy efficiency of buildings and urban design environmentally friendly, the program of sustainable architecture techniques Herzing provide students an excellent start to a cleaner future, more intelligent and more human.

Considering the recent changes to laws governing the practice of architecture, particularly for expanding the scope of intervention of architectural technologists to include architectural design, the program of sustainable architecture techniques Herzing College has been designed to encourage students to grasp concepts and ideas of history of architecture and design, management principles and construction techniques. They must also be able to apply that knowledge to the concepts of sustainable development practices and use of traditional building materials and contemporary.
This 18-month program in addition to theoretical / practice includes an internship of 12 weeks. The course allows students to gain valuable experience and practice in the design.

Once completed, this program will lead to an Attestation of Collegial Studies (AEC), but more importantly, it will open the doors of a magnificent career in which skills and qualifications are in demand.

What career path will Herzing College prepare me for?

The program for sustainable architecture techniques designed to train technologists able to practice in offices of architects or technologists, engineering firms, construction companies and government agencies.

These people contribute to a project of sustainable architecture and realize that, within the limits of Architects Act, the Professional Engineers Act, the Act respecting safety in public buildings and Code occupations. Thus, they can produce drawings and promotional materials, design of construction details, write the specifications, estimate the cost of the work, coordinate construction, see the status of a building, verify compliance of a building with laws, standards and building code and contribute to the quality of the architectural heritage. The importance and frequency of tasks vary depending on the business and the type of work: employee or self-employed.

The following names are likely to describe their work: Appraisers and assessors, civil engineering technologists and technicians, architectural technologists and technicians, and drafting technologists and technicians.

Software and software packages used

Students will use the Autodesk® product family and AutoCAD®. This software allows you to create buildings, manufactured products and infrastructures. The program focuses on creating buildings and manufactured products.

What competencies will have been acquired at the end of the training?

1. Analyze the work function
2. Interpret drawings and specifications
3. Make sketches
4. Perform calculations for a building
5. Check the compliance of a building or plan to the Building Code and the laws, regulations and standards.
6. Analyze the environmental impact of a project
7. Taking responsibility under health and safety on construction sites
8. Appreciate the architectural features of a structure
9. Conduct surveys of buildings
10. Make presentation drawings
11. Make drawings
12. Analyze a problem with a building
13. Design construction details
14. Produce the specifications of a project
15. Estimate construction costs
16. Perform project management activities
17. Perform the project design
18. Conduct the feasibility study of a project
19. Promote and apply their skills, services and achievements

Admissions Criteria
A person is eligible for a program leading to an Attestation of College Studies if they have a DES or DEP or relevant work experience or have received instruction deemed acceptable by the college in addition to having at least succeeded at Mathematics 436 and Physical Science 436 and who meets one of the following:

1. has interrupted studies for at least two consecutive semesters or one academic year;
2. is covered by an agreement between the college and an employer or a government program;
3. has completed at least one year of post secondary education over a period of one year or more.

In addition the person must:

4. take an entrance test or a problem solving course.

TECHNICAL ARCHITECTURE SUSTAINABLE EEC.2Q

The College reserves the right to modify the content of one or more current operating systems, work tools and the sequence of courses during the year.

- **Theory:** 645 hours
- **Practical:** 855 hours
- **Internship:** 450 hours
- **Total:** 1950 hours
- **Total Units:** 63.33
SCHEDULE

When you make your entry into the labor market, you will find yourself surrounded by more experienced colleagues who will help you get familiar with your new environment. Once you have gained experience, you will become probably your turn to mentor junior employees who start in the business.

Herzing College has developed a teaching method and a training schedule that layer the real world of work and allow you to adapt in advance. So you will start your prerequisites in the first session and can either continue your studies with the same group or join an existing group. This means that you end up sometimes in the role of junior, sometimes in the role of mentor, helping new students according to the session and the group.
SESSION I

APPLIED MATHEMATICS FOR ARCHITECTURE 201-AD10-HE 60 HOURS 2.00 UNITS
Perform calculations on a building-HER0355

This course aims to teach the application of mathematical tools to solve practical problems in architecture and applied science. The concepts covered include mathematical calculations and geometrical systems imperial and metric measurements, introduction to algebra, simple equations, functions and graphs, perimeters, areas and volumes of solid, trigonometry and vectors the factors and billing, fractions and fractional equations, ratios and proportions, the system of two linear equations, quadratic equations, geometry and descriptive and analytical. Particular applications of mathematics to sustainable architecture will be performed.

TECHNICAL ARCHITECTURE & ARCHITECTURAL DRAWING 221-AD11-HE 60 HOURS 2.00 UNITS
To analyze the work-HER0350

The practice of technical and architectural technologist position in the performance of the design and construction of the built environment are presented. The course is the roles, responsibilities, potential and constraints of the design and construction in general and sustainable architecture in particular. The course allows students to be in the world of architecture, engineering, urban planning, real estate, materials and manufacturing, construction and sustainable architecture. This course introduces students to the basic conventions, practice and techniques of hand drawing and architectural drawing and model making techniques. Students gain the knowledge and ability to understand 3D objects and produce multi-view drawings and 3D renderings, presentation drawings, construction drawings and details. This course also presents the various computer applications and software used in architecture and construction. The concept and use of CAD and basic commands will be presented and practiced in the context of sustainable architecture.

DESIGN & CONSTRUCTION & ENVIRONMENTAL SUSTAINABILITY 221-AD12-HE 60 HOURS 2.00 UNITS
Analyze the work function HER0001; Perform project design HER035N

This course presents the concepts, ideas, the complexities and contradictions, the application of the concept and practice of sustainable development. The application of the concept of sustainable development to the drawings of the environment, architecture, manufacturing and assembly of materials and building design, and construction in the production process of sustainable architecture will be presented. The impacts of construction activities on the environment and ecology will be discussed. The different standards to measure the impact of architecture, construction and design of the environment, including LEED, will be presented. The techniques for measuring the impact of construction activities on the ecology will be performed. The evaluation of materials and assembly components of buildings, new and recycled, will also be presented, as well as the implementation of various government policies in sustainable architecture, construction and urban development.
HISTORY OF ARCHITECTURE AND SUSTAINABLE ARCHITECTURE 221-AD13-HE 60 HOURS 2.00 UNITS

Appreciate the architectural features of a book HER035A

This course aims to introduce students to the history of architecture through time and place. He will present an overview of the evolution of ideas, styles and architectural expressions, choice of materials and construction techniques. Economic, social and cultural rights have played a role in the design and construction of the built environment will be presented. Finally, the design, site development, landscape and the context, the choice of materials and construction will be analyzed in relation to the concept of sustainable development and their impact on the environment and ecology, to identify examples of sustainable architecture.

ANALYSIS AND DESIGN STATEMENTS OF GREEN BUILDINGS 221-AD14-HE 60 HOURS 2.00 UNITS

Conduct surveys of buildings HER035B

This course presents the technical graphic and photographic survey, measurement, documentation, design and research information needed to understand an existing building. Students will produce a record of building sustainable according to the conventions of architectural drawing and presentation drawing. The structural and building services will be identified and the context of the building ahead. Following the production of the statement, students will conduct a technical analysis of the building to produce a full report to understand and intervene in an existing building.

SESSION II

ARCHITECTURAL DRAWING I 221-AD21-HE 90 HOURS 3.00 UNITS

Make sketches HER0352

Prerequisites 221-AD11-HE
Architectural Drawing I is the first course to introduce students to the applications tools operating CAD (computer aided design) architecture. The course will emphasize the use of the latest version of AutoCAD software for Windows. Students will experience the production of architectural drawings, plans, elevations and sections, site plan and construction details using all the commands, options and useful modifications of AutoCAD. Each student will have access to a computer equipped for the production of DAO. The efficiency, accuracy of measurements and quotes and completeness of the drawings will be required and performed. Using AutoCAD for the production of presentation drawings of sustainable buildings will also be covered. Other software used in the fields of architecture, manufacturing and construction and various operating systems will also be presented. Topics covered include: Polylines and Polyline Edit, Paper Space Layouts, Block Attributes, Xreferences and 3D drawings.
ECOLOGICAL WOOD CONSTRUCTION - RESIDENTIAL BUILDING 221-AD22-HE 60 HOURS 2.00 UNITS
Interpret drawings and specifications HER0351; design construction details HER035G

Prerequisites 221-AD14-HE
This course is the purpose of presenting the elements, structure and use of residential building materials wood frame. The course will also address building science, materials and construction methods in accordance with Division 9 of the NBC (National Building Code). Producing architectural drawings, structural and details of performance for a residential building wood frame, students will acquire the knowledge, techniques and skills to produce drawings, choice of different wood materials using Tables of materials and their characteristics, and methods of construction and exterior finish. The drawings will be produced by CAD (AutoCAD). The principles of sustainable architecture in wood will be presented and applied. The concepts of physics applied to the architecture and structure, statics, strength of materials and the calculation and distribution of charges will be presented and practiced.

REGULATION OF CONSTRUCTION AND BUILDING CODES 221-AD23-HE 90 HOURS 3.00 UNITS
Interpret drawings and specifications HER0351; Verify compliance of a building or plan to the Building Code and the laws, regulations and standards HER0356

Prerequisites 221-AD14-HE
This course aims to familiarize students with the concepts of all codes, regulations and standards applied in architecture, construction and urban planning. The National Code of Canada will be studied in detail and followed by a learning objective application of the NBC The focus will be on the application of various sections and divisions of the Code in order to identify various solutions to meet the code requirements and zoning and use, size, number of floors and area regarding the safety of users at the structure, fire protection and other safety requirements. In addition, the standard evaluation of materials in general and sustainable architecture, such as LEED, will be presented and implemented.

GREEN BUILDING STEEL, MASONRY AND CONCRETE 221-AD24-HE 60 HOURS 2.00 UNITS
Make drawings HER035D, design construction details HER035G

Prerequisites 201-AD10-HE
This course is in the nature, potential, and the use of three materials used in the field of architecture and construction: steel, masonry and concrete, including their qualities, their means of production and variety. Potential uses of steel, masonry and concrete, used separately and in conjunction and integrated, and the method and criteria for evaluation and selection depending on the nature and needs of the project will presented. The chemical qualities, production and environmental response of these materials in conjunction with other systems, components and building materials will also be presented, as well as the advantages and disadvantages of each in a variety of construction projects and sustainable development. The assembly on site, prefabrication, functions and use for different parts of buildings, such as foundations, structure, etc., Installation methods and materials performance will be presented. The appropriate calculations depending on usage and accepted standards are introduced and practiced. The
concepts learned in this course will be practical in the current commercial and industrial projects.

SESSION III

ARCHITECTURAL DRAWING II 221-AD31-HE 90 HOURS 3.00 UNITS
Conduct surveys of buildings HER035B

Prerequisites 221-AD24-HE
Based on the knowledge of architectural design and CAD acquired in previous courses, this course aims to introduce and practice the advanced commands of AutoCAD. Students' skills in AutoCAD to produce architectural design and construction complex 2D and 3D will be increased. The potential and application of advanced AutoCAD to design, layout, edit and share data, will be charged. Production techniques of 3D drawings and 3D modeling and rendering techniques, lighting, color and texture will be presented and practiced. Students will produce architectural drawings and details using the concepts and techniques presented.

PROJECT DEVELOPMENT & ENVIRONMENTAL STUDY FEASIBILITÉ 221-AD32-HE 60 HOURS 2.00 UNITS
Conduct the feasibility study of a project HER0002

Prerequisites 221-AD23-HE
This course presents the evolution and development of urban form and architectural integration into its urban context, meeting the functional needs and respecting the laws, codes and other sustainable development, and finally considering the request of real estate market. The different structures of cities and the economic, social and cultural rights to be considered in feasibility studies and decision-making on the site development, density, materials, construction and project size to better meet market demands will be discussed. The structure of municipal government and the roles of different services and the inclusion of regulations in the implementation of a construction project will be discussed. The real estate market, the economic context, the demands of consumers and developers, the preliminary architectural design, the preliminary selection of materials and mechanical systems, methods of construction, preliminary construction costs and potential sales, as an elements of a market study will be presented and applied to a potential project. The views and 3D presentation drawings and the production of a book promotion, will be presented and practiced with emphasis on techniques of textual and visual communication using the potential of graphic design software.

GREEN CONSTRUCTION - INSTITUTIONAL BUILDINGS 221-AD33-HE 60 hours 2.00 UNITS
Analyze a problem with a building HER035F
Prerequisites 221-AD22-HE
During this project aims to guide students step by step in the process of design and construction of a small-scale institutional building as a clinic, community center, school, daycare, etc.. Students will produce presentation drawings 2D and 3D architectural drawings of the project and those of structure with the necessary details, applying the conventions and techniques of architectural drawing and CAD. The functions, requirements, design, materials and structural system of steel, masonry and concrete will also be considered. The drawings are finally produced. The science building, the environmental context and the elements of the building envelope will be presented. The foundation, the system structure, control of water, moisture and steam, sustainability and environmental and ecological impact of the building will be integrated into the project.

SERVICES OF GREEN BUILDING & ENERGY MANAGEMENT _221-AD34-HE_ 90 HOURS 3.00 UNITS
Interpret drawings and specifications HER0351, Perform calculations for a building HER0355, estimate construction costs HER035J

Prerequisites 221-AD21-HE
This course presents an overview of the control system of the environment inside the building. Emphasis is placed on a qualitative and quantitative understanding of several elements and mechanical components, electric and acoustic to make the building habitable, comfortable and functional, taking into account the impact of these interventions in terms of architecture sustainable and environmentally friendly. The various possibilities for achieving these goals for mechanical, electrical including lighting and acoustics will be presented. This course presents methods of selection, evaluation, energy efficiency measures and the installation methods and modes of operation of various mechanical, electrical and lighting. The basic physics of electricity and lighting will be applied to the process of power distribution, the main entrance to all areas of the building. The lighting design based on the principles of engineering and architecture will be discussed and practiced. Students will conduct the evaluation and selection of the lighting system to meet the needs of the building and considering the requirements of sustainable architecture and energy efficiency. Among the topics covered, the visual process, the natural and artificial light, color, performance and effectiveness of devices are presented and applied. This course introduces the concepts of heating, cooling and ventilation, light and design process, evaluation and selection of equipment to meet the needs of users, considering the requirements of sustainable architecture and the energy efficiency. Topics covered in this course are also the notions of basic thermal comfort, heat transfer, insulation, the calculation of heat loss, moisture control and the basic principles of plumbing. Students will become familiar with the design manuals, tables of standards, working drawings and specifications for projects. The integration of electrical and mechanical services with other architectural and structural systems will be presented and practiced.

SESSION IV
ANALYSIS OF SITE LAYOUT AND LANDSCAPE PROJECT 221-AD41-HE 90 HOURS 3.00 UNITS
Analyze the work function HER0001; Perform project design HER035N

Prerequisites 221-AD41-HE
This course presents the active elements of the process of land use and planning, architectural form and landscape context of the building. Students will produce site plans based on the principles of landscape architecture, gardening, drainage and traffic, as well as the requirements of regulations and codes, considering the conditions and principles of the sustainable architecture. Students will explore the process of design and construction of the project site in an urban and suburban. The parallels between the design ideas of the environment and ecology, including the approach to green architecture and ecology, will be presented and applied to a project. The process of site analysis, the method of locating information on the site and identification of natural and built the site, such as orientation, topography, access and vegetation, will be presented. Municipal regulations and codes concerning the site will be studied and applied. Architectural and structural requirements of the projects and their relation to the potential and constraints of the site will be analyzed. Suitable materials, the building heights and massing of the project will be reviewed and applied to a concrete project.

GREEN BUILDING - BUILDING CULTURAL 221-AD42-HE 60 HOURS 2.00 UNITS
Make presentation drawings HER035C, Perform project design HER035N

Prerequisites 221-AD33-HE
During this project aims to guide students step by step in the process of design and construction of a cultural building small scale, as a community center, a cultural center, an art gallery, a community museum, a room show or a municipal theater. Students will produce presentation drawings 2D and 3D architectural drawings including the site map as well as those with structural details, applying the conventions and techniques of architectural drawing and CAD. The functions, requirements, design, materials, structural system of steel, masonry and concrete will also be taken into account. The drawings are finally produced. Building science, environmental context and the elements of the building envelope will be presented. Foundations, the structural system, control of water, moisture and steam, sustainability and environmental and ecological impact of the building will be incorporated. The mechanical, electrical, lighting and sound will also be taken into account and integrated into the project. The principles and requirements of sustainable architecture will be applied. Bylaws and relevant sections of the NBC will be identified and considered in the process of project delivery.

SPECIFICATION, ESTIMATION AND MATERIALS 221-AD43-HE 90 HOURS 3.00 UNITS
Produce the specifications of a project HER035H, estimate construction costs HER035J

Prerequisites 221-AD34-HE
This course introduces the varieties, characteristics and application of building materials commonly used in an architectural project in general and sustainable architecture in particular. Methods of application materials, their advantages and disadvantages for use in different parts of
a building such as foundations, exterior siding, roof, structure, etc..., Assemblies and components such as windows, will be analyzed and methods of evaluation and selection will be presented. The use and application, content and organization of a typical specification will be presented. Based on knowledge of materials, this course presents the process and the steps of producing a specification for architectural design, considering the characteristics of sustainable architecture. The standard materials will be presented. Students produce a project specification for a material and an element of the building. The focus will be on developing skills in writing and technical communication students. This course introduces students to the principles and practice of quantitative and qualitative analysis of project costs and estimating using Timberline software. Different methods of estimating costs will be presented. This course examines the principles and practice of quantitative material. Requirements for estimating projects will be discussed. The role and responsibility of the estimator in the process of realization of architectural and sustainable design will be presented and the estimation of different phases of the project. Students apply these principles and practices for estimating project costs of sustainable architecture. Relationships and overlapping materials, specifications and estimates will be discussed.

PORTFOLIO, JOB SEARCH AND INTERVIEW TECHNIQUES HE-221-AD44 60HOURS
2.00 UNITS
Promote and practice their skills, services and achievements HER0003

Prerequisites 221-AD31-HE
This course aims to equip students with the tools to succeed in finding and maintaining employment in their field. Interview strategies, the writing process and the organization of a resume will be reviewed, practiced and applied. The process of finding employment in areas related to professional practice students will be introduced and practiced. The production of a CV based on the evaluation of personal and professional skills will be presented. Presentation tools of their personal tailored to each job will be performed. The size, diversity, functions and content of a professional portfolio and its adaptation to the requirements of each job offer will be presented. Students produce a portfolio of their projects and present it to potential employers by exercising their ability to be interviewed. The initiation of a process of job search, producing a CV and a portfolio appropriate comprehensive and relevant and the presentation of his CV, its expertise in sustainable architecture and its portfolio will be presented and practiced by students. The context of professional practice, relationships with other professionals, the specificity of each type of job in architecture and construction will be presented. Strategies to maintain employment and meet the job requirements will also be presented.
SESSION V

PROJECT MANAGEMENT AND SAFETY ON SITES 221-AD51-HE 90HOURS 3.00 UNITS
Perform project management activities HER035M, Taking responsibility under health and safety on construction sites HER0359

Prerequisites 221-AD43-HE
This course presents methods, tools and roles of professionals in the process of project management architecture and construction. The various management methods and software used in project management and construction will be presented. The roles and responsibilities of project manager and construction strategies to adopt and collaboration with other professionals in order to meet the requirements of the project, including planning, scheduling, cost control and vendor management and labor will be presented. The distribution of tasks, training, work teams, holding meetings, working relationships with clients and internal communications are among the topics discussed. Finally, an overview of the construction industry describing the roles, responsibilities and contractual relationship of each stakeholder will be presented. Legal documents of a construction project will be studied by students. Legal requirements applied to a construction site safety and health of workers and the responsibilities of each of these levels will be presented. Procedures for site inspection of construction and verification are also discussed. Management of materials and construction waste and energy efficiency of the implementation of a construction project will be presented. This course introduces the code of Health and Safety Commission Health and Safety at Work and its application in various projects. Potential situations of danger based on past experiences will be presented. Finally, students apply the methods and knowledge learned during the course to a concrete project.

SUSTAINABLE INDUSTRIAL & COMMERCIAL BUILDING 221-AD52-HE 60HOURS 2.00 UNITS
Make drawings HER035D

Prerequisites 221-AD42-HE
During this project aims to guide students step by step in the process of design and construction of an industrial building or commercial small scale as a warehouse, garage, store, shop or office. Students will produce presentation drawings 2D and 3D architectural drawings of the project and those with structural details, applying the conventions and techniques of architectural drawing and CAD. The functions, requirements, design, materials and structural system of steel, masonry
and concrete will also be taken into account. The drawings are finally produced. Building science, environmental context and the elements of the building envelope will be presented. Foundations, the system structure, control of water, moisture and steam, interior finish, durability and environmental and ecological impact of the building will be incorporated. Systems structure and materials appropriate to this type of building will be analyzed, evaluated and implemented. The mechanical, electrical, lighting, and sound will also be considered and incorporated. The principles and requirements of sustainable architecture will be applied. Bylaws and relevant sections of the NBC will be identified and considered in the process of the project. Finally, a rough estimate of costs and a management plan for the project will be produced.

GREEN BUILDING INTERIORS 221-AD53-HE 60 HOURS 2.00 UNITS
Make presentation drawings. HER035C

Prerequisites 221-AD41-HE
During this project aims to guide students step by step in the process of design and construction of a proposed design within a building as a small-scale nursery, shop, or a cultural center. Students will produce presentation drawings 2D and 3D architectural drawings and details of the project by applying the conventions and techniques of architectural drawing and CAD. The functions, requirements, design, materials and structural systems, mechanical and electrical will be considered. The drawings are finally produced. The choice of finishing materials and furniture will be presented, considering the requirements of sustainable interior design. The integration of different services of the building with architectural space, the colors and lighting will be part of the project students. These will be familiar with various software used in design and presentation tools with the project design, interior finishes such as tables, perspectives and the representation in words and graphics.

BUILT AND ECOLOGICAL RENOVATION 221-AD54-HE 90 HOURS 3.00 UNITS
Analyze a problem with a building HER035F

Prerequisites 221-AD41-HE
During this project aims to guide students step by step in the process of study, analysis, evaluation and technical heritage, and design and construction of a conservation project, recycling and renovation to meet customer needs. Heritage features and techniques of the existing building will be included in the project. The peculiarities of the building and the special challenges of intervention will be considered. Students will produce presentation drawings 2D and 3D architectural drawings of the project and those with structural details, applying the conventions and techniques of architectural drawing and CAD. The functions, requirements,
design and materials will also be considered. Appropriate reports and drawings are finally produced. Building science, environmental context and the elements of the building envelope, foundations, system structure, control of water, moisture and steam, sustainability and environmental impact and Green building will be incorporated. The requirements of an old building, heritage or recognized and methods of locating information will be presented. The various laws, regulations, policies and guidelines will be discussed and considered in a project of architectural conservation and renovation. The choice of materials and their application, restoration techniques and the principles of sustainable architecture will be presented and applied.

SESSION VI

STAGE: PROFESSIONAL PRACTICE AND INTEGRATION 221-AD61-HE 450HOURS 10.00 UNITS
Promote and practice their skills, services and achievements HER0003

Prerequisites 221-AD44-HE
In this course students will be supervised during their training in the workplace to ensure their integration and application of professional skills acquired during their training. Students will be supported in their placement in industry during their internship. Exchanges between the teacher, the supervisor and the student will be structured to ensure the success of vocational training. The nature, quality and impact of professional training, employment relationships, productivity, respect for others, punctuality and behavior of students in the workplace will be supervised. Students will participate in the realization of an architectural design and construction by putting into practice all the skills acquired during their studies.